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Abstract. Approximate solutions of matrix linear differential equations by matrix exponentials
are considered. In particular, the convergence issue of Magnus and Fer expansions is treated.
Upper bounds for the convergence radius in terms of the norm of the defining matrix of the
system are obtained. The very few previously published bounds are improved. Bounds to
the error of approximate solutions are also reported. All results are based just on algebraic
manipulations of the recursive relation of the expansion generators.

1. Introduction and general survey

The initial value problem for the matrixX(t) given by the linear differential equation

dX

dt
= A(t)X (1)

with initial conditionX(0) = I appears very often in many branches of science. HereA(t)

stands for a sufficiently smooth matrix function to ensure the existence of solutions and the
equation is, at least in principle, easily solved by iteration: expanding

X(t) = I +
∞∑
k=1

Pk(t) (2)

with Pk(0) = 0 and then substituting into equation (1) one is able to deduce in the usual
way the recursive algorithm

d

dt
Pk = A(t)Pk−1 P0 ≡ I. (3)

The above scheme is named differently depending on the context: Neumann series,
perturbation theory, Dyson expansion and so on. The series in equation (2) converges
for all values oft for boundedA(t) no matter how large its norm [1]. One drawback of the
method is that its convergence is too slow and furthermore its truncation generally misses
some special property of the exact solution: a point much stressed currently as will be
discussed later. Note that although, for definiteness, we have stated the problem in matrix
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terms it could be, and in many applications has been, framed in a more abstract operator
algebra setting.

In the following we address our interest toward two alternative methods to compute
approximate expressions forX(t), namely, Magnus [2] and Fer [3] expansions. The first
(hereafter referred to as ME) yields a representation of the matrixX in terms of a unique
exponential

X(t) = e�(t) (4)

where� is obtained as an infinite series

�(t) =
∞∑
k=1

�k(t). (5)

From a practical point of view explicit formulae for�k are available in terms of nested
commutators ofA(t) and multiple integrals up to fourth [1, 4, 5] and fifth order [6]. Very
recently explicit formulae for�k of all orders have been given in [7]. The important
feature for the purposes of the present work is that�k can be obtained in a recursive way
[4]. Moreover, recursive generation of�k from Pk ’s of a Dyson expansion is also possible
[4, 8].

Fer’s expansion (FE from here on) furnishes an exponential infinite-product expansion
of X(t)

X(t) =
∞∏
k=1

eFk(t) = eF1(t) eF2(t) . . . . (6)

Here theFk ’s are also recursively built up [3, 9].
Before we state the profound reasons for the unique interest of these exponential

algorithms and present their convergence problems, in the following two paragraphs
we gather some references to different physical systems where ME and FE have been
applied.
• Magnus Expansion. When tracing back citations to the paper of Magnus [2], the work

by Robinson [10] seems to be the first application of the ME to a physical problem. Since
then, the ME became rapidly popular and we quote just a few examples of its applications.
It has been used in quantum mechanics to study time-dependent problems [1], semiclassical
atomic collisions theory [11], the behaviour of molecular systems in intense laser fields
[5], multiphoton excitation of molecules [12], pulsed magnetic resonance spectra [13, 14],
spectral line broadening [15], infrared divergences in QED [16], the solar neutrino problem
(MSW effect) [17], high-resolution NMR spectroscopy in terms of average Hamiltonians
[8, 18], and a trajectories solution of the Hamilton equations in classical mechanics [19].
On the mathematical side, new horizons seem to have been opened for the algorithm used
as an efficient numerical integrator [7].
• Fer’s Expansion. In contrast to the ME, much less attention has been paid to solutions

of equation (1) in the form of an infinite product of matrix exponentials and the FE has
had a peculiar history. To the best of our knowledge, the proposal made by Fer in [3]
was never used to solve physical problems until recently. Wilcox, in his fundamental
paper [20] in this field, associated Fer’s name with an interesting alternative infinite-product
expansion which actually was a novelty by itself but definitely different from the FE. Since
the ME is sometimes called the continuous analogue of the Baker–Campbell–Hausdorff
formula, Wilcox expansion turns out to be the continuous analogue of the Zasenhauss
formula. It is worth mentioning that Fer’s paper is occasionally misquoted as a reference
for the ME [11, 21]. This situation was clarified in [9] and some applications of the FE
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to quantum mechanics were carried out for the first time. An adaptation of the algorithm
to the particular context of classical mechanics in terms of Lie operators was elaborated in
[22], where a comparison with Dragt–Finn factorization [23] is carried out. Application of
Fer’s factorization as a symplectic integrator [24] and as a tool for solving certain linear
partial differential equations [25] has lately been developed by one of the present authors.
In numerical analysis the FE was rediscovered by Iserles [26] and is now being intensively
investigated as a powerful tool to treat both linear and nonlinear differential equations on
Lie groups and other manifolds [27].

Needless to say, equation (1) could also be treated by any of the general purpose
algorithms to solve differential equations. The important point to be emphasized here is
that the main reason for the usefulness of the exponential algorithms we are discussing lies
in the fact that, when truncated, they still preserve structural intrinsic properties of the exact
solution. We quote just two instances of this fact: if equation (1) refers to the quantum
mechanical evolution operator,X(t) has to be unitary. If, on the other hand, we deal with
the evolution operator of a classical Hamiltonian system it has to be symplectic. These are
group theoretical properties which the ME and FE guarantee when stopped at any finite
order because the special role the exponential mapping plays in group theory.

To end this brief survey, let us turn our attention towards the less studied aspects of
these schemes, namely those questions referring to the convergence of the algorithms. This
will be our main concern in this paper.

There are two correlated problems with respect to the Magnus solution: (i) When does
X admit the exponential representation equation (4)?; (ii) Where (int-domain) does the
series in equation (5) converge? The first question was analysed by Magnus in his classical
celebrated paper [2], and revisited by Wei [28]. Much less is known about the convergence
question. As far as we know only Pechukas and Light [1] in the mid 1960s and very recently
Iserles and Nørsett [7] have touched on this problem in the general case. Constraints on
the convergence of the ME for some common decompositions of matrixA(t) can be found
in the literature [29]–[34]. However, this is a different and less general question which
we are not concerned with here, since we do not require any particular knowledge of
A(t).

In this paper, by appropriately dealing with the recursive procedure for the generation
of higher-order terms in the ME proposed in [4], we will be able to enlarge the convergence
domain. We mention in passing that by a similar technique the often forgotten result quoted
in the appendix of [1] can also be recovered.

Concerning the FE, the convergence of the algorithm was already considered in the
original paper by Fer. We improve the argument and consequently widen the convergence
region [35]. If some additional property is assumed forA(t) it can be further enlarged.

The knowledge of bounds for the convergence of both the ME and FE is a result
interesting in itself. When the ME and FE are used as a mathematical tool to obtain
analytical approximations toX(t) any information on the extension of the convergence
region is of great interest. On the other hand, if the algorithms have to be useful for
massive and precise numerical integration, the knowledge for such bounds is important. In
both types of applications the need for bounds on the error of an approximate solution is
something which hardly needs to be emphasized, so this important practical question will
also be touched upon.

In order to make the paper self-contained, in section 2 make we shall report briefly on
the recursive generation of the ME prior to analysing its convergence properties. The same
scheme will be followed for the FE in section 3. In section 4 we draw our conclusions and
consider the future developments.
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2. Analysis of the Magnus series expansion

2.1. The algorithm

The Magnus proposal to solve equation (1) is to takeX(t) in the formX = e�. If this
is substituted in the original equation we obtain the nonlinear matrix differential equation
[2, 4, 10, 20]

�̇ =
∞∑
j=0

Bj

j !
{�j,A} �(0) = 0. (7)

Here the dot stands for time derivative, the curly brackets denote a nested commutator with
� enteringj times

{�j,A} ≡ {�j−1, [�,A]} = [�, [. . . [�,A] . . .]]

{�0, A} ≡ A (8)

with [�,A] ≡ �A− A�, andBj are Bernoulli numbers [36].
Substituting Magnus series� =∑∞j=1�j into equation (7) one gets [4]

�̇1 = A

�̇n =
n−1∑
j=1

Bj

j !
S(j)n n > 2 (9)

with the recurrence relation

S(j)n =
n−j∑
m=1

[�m, S
(j−1)
n−m ] 2 6 j 6 n− 1

S(1)n = [�n−1, A] S(n−1)
n = {�n−1

1 , A}. (10)

After integration we reach the final result

�1 =
∫ t

0
A(τ) dτ

�n =
n−1∑
j=1

Bj

j !

∫ t

0
S(j)n (τ ) dτ n > 2. (11)

Connection between the Magnus series and Dyson perturbative series starts from the
identity

∞∑
j=1

�j = ln

(
I +

∞∑
j=1

Pj

)
. (12)

As stated by Burum [4, 8]

�n = Pn −
n∑
j=2

(−1)n

j
R(j)n n > 2 (13)

whereR(j)n may be obtained recursively from

R(j)n =
n−j+1∑
m=1

R(1)m R
(j−1)
n−m

R(1)n = Pn R(n)n = Pn1 . (14)
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2.2. Convergence of the Magnus expansion

In order to study the convergence of the Magnus series we now substitute equation (11)
into equation (10) to get

S(j)n (t) =
[ ∫ t

0
A(τ) dτ, S(j−1)

n−1 (t)

]
+

n−j∑
m=2

m−1∑
p=1

Bp

p!

[ ∫ t

0
S(p)m (τ ) dτ, S(j−1)

n−m (t)
]
. (15)

Let the matrix A(t) be bounded, with‖A(t)‖ a piecewise continuous function which
we assume is bounded above by the scalar functionk(t), ‖A(t)‖ 6 k(t). If we denote
K(t) ≡ ∫ t0 k(t ′) dt ′, we will have‖�1(t)‖ 6 K(t) and equation (15) implies

‖S(j)n (t)‖ 6 2K(t)‖S(j−1)
n−1 (t)‖ + 2

n−j∑
m=2

m−1∑
p=1

|Bp|
p!

(∫ t

0
‖S(p)m (τ )‖ dτ

)
‖S(j−1)

n−m (t)‖. (16)

It is straightforward to show by induction that

‖S(j)n (t)‖ 6 (K(t))n−1 k(t)f (j)n (17)

provided the coefficientsf (j)n obey the many-term recurrence relation

f (j)n = 2
n−j∑
m=1

m−1∑
p=0

|Bp|
p!m

f (p)m f
(j−1)
n−m (18)

with f (0)1 = 1, f (0)n = 0, for n > 1. Consequently, if we define

bn = 1

n

n−1∑
p=1

|Bp|
p!

f (p)n (19)

we have

‖�n(t)‖ 6 bn(K(t))n. (20)

We conclude then that absolute convergence of Magnus series is ensured if

K(t) lim
n→∞

bn+1

bn
< 1. (21)

Numerical investigation of this condition clearly indicates that we will have convergence
for t values which make

K(t) < ξ ≡ 1.086 869. (22)

Clearly this bound could be improved if the inequalities leading to equation (20) could be
sharpened.

In the particular case ofk(t) = ρtλ, λ ∈ Z+, ρ ∈ R+, considered in [7] we have

t <

[
(1+ λ)ξ

ρ

]1/(1+λ)
. (23)

Our valueξ = 1.086 869 has to be compared with the value 0.125 given by Iserles and
Nørsett. This means that we have neatly enlarged the convergence domain.

A similar procedure going through equations (13) and (14) leads to

‖R(j)n ‖ 6 (K(t))ng(j)n (24)
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providedg(j)n is generated by the recurrence relation

g(j)n =
n−j+1∑
m=1

1

m!
g
(j−1)
n−m j > 1

g
(1)
1 = 1. (25)

A numerical investigation now yields the following bound for convergence of the Magnus
series

K(t) < ln 2= 0.693 147 (26)

which reproduces the result quoted by Pechukas and Light [1] for a constant upper bound
k(t) = ρ.

We consider equation (26) a check that confirms the validity of the procedure followed
in this section and (22), in turn, a significant improvement of the bound for the convergence
region.

2.3. Order analysis and error bounds

Let us suppose now thatA(t) = O(tλ). Then, obviously,�1(t) = O(tλ+1), whereas, from
equations (10) and (11), we have

�2(t) = −1

2

∫ t

0
[�1(τ ), A(τ)] dτ = O(t2λ+3) (27)

because the leading term in the expansion ofA(t) commutes with that corresponding to
�1(t). It is easy to show by induction that�n(t) = O(tn(λ+1)+1) for n > 2. Therefore,
when the Magnus series for�(t) is truncated at thenth term and the approximation
�[n](t) ≡ ∑n

j=1�j(t) is considered, then�(t) − �[n](t) = O(t (n+1)(λ+1)+1), so that in
terms of matrices

X(t)−X[n](t) ≡ e�(t) − e�
[n](t) = O(t (n+1)(λ+1)+1)

which is the result obtained in [7].
In the general case, if we writeK = αξ , with 0< α < 1, the estimate in equation (20)

leads to‖�n+1‖ 6 αn+1ξn+1bn+1, whereas

‖�(t)−�[n](t)‖ 6
∞∑

i=n+1

αiξ ibi .

As an illustration, ifα = 1/2 andn = 4, then‖�−�[n]‖ < 0.0065.

3. Analysis of the Fer product expansion

3.1. The algorithm

Fer’s algorithm approximates the solutionX(t) to equation (1) by a product of matrix
exponentials. The expansion is generated by the following recursive scheme:

X = eF1 eF2 . . .eFnXn
Ẋn = An(t)Xn Xn(0) = I n = 1, 2, 3 . . . (28)
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with Fn(t) andAn(t) given by

Fn+1(t) =
∫ t

0
An(t

′) dt ′ A0(t) = A(t) n = 0, 1, 2 . . .

An+1 = e−Fn+1An eFn+1 −
∫ 1

0
dx e−xFn+1An exFn+1

=
∫ 1

0
dx
∫ x

0
du e−(1−u)Fn+1[An, Fn+1] e(1−u)Fn+1

=
∞∑
j=1

(−)j j
(j + 1)!

{F jn+1, An} n = 0, 1, 2 . . . (29)

where the notation of the previous section has been used.
When aftern steps we imposeXn = I we are left with an approximationX[n](t) to the

exact solutionX(t).

3.2. Convergence of the Fer expansion

To study the convergence of the Fer expansion we look for conditions onA(t) which insure
Fn→ 0 asn→∞. As in the previous section, we takeA(t) to be a bounded matrix with
‖A(t)‖ 6 k(t) ≡ k0(t). Fer’s algorithm, equations (28) and (29), provides then a recursive
relation among corresponding boundskn(t) for ‖An(t)‖. If we denoteKn(t) ≡

∫ t
0 kn(t

′) dt ′,
we can write this relation in the generic form

kn+1 = f (kn,Kn) (30)

which after integration gives

Kn+1 = M(Kn). (31)

The question now is: When willKn → 0 asn → ∞? This will certainly be so if
zero is a stable fixed point for the iteration of the mappingM andK0 is within its basin
of attraction. To see when this is the case we have to solve the equationξ = M(ξ) to find
where the next fixed point lies. Let us do it explicitly. By taking norms in the recursive
scheme of equations (29) we have

‖An+1‖ 6
∫ 1

0
dx

∫ x

0
du e2(1−u)Kn‖[An, Fn+1]‖ (32)

which can be written in the form‖An+1‖ 6 kn+1, with

kn+1 = 1− e2Kn(1− 2Kn)

2Kn

dKn
dt

(33)

and consequentlyKn+1 is given by equation (31) with

M(Kn) =
∫ Kn

0

1− e2x(1− 2x)

2x
dx. (34)

That is the mapping we have to iterate. It is clear thatξ = 0 is a stable fixed point of
M. The next, unstable, fixed point isξ = 0.860 4065. So we can conclude that we have a
convergent Fer expansion for values of timet such that∫ t

0
‖A(t ′)‖ dt ′ 6 K0(t) < 0.860 4065. (35)

This result widens the rangeK0(t) < 0.628 originally given by Fer [3] using a slightly
different argument.
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We point out that additional properties ofA(t) allow an improvement of this result. For
example, ifA(t) happens to be skew-Hermitian thenξ = 2.

Notice also that whenever for a particular valuen = n0 another bound̃kn0 < kn0 for
‖An0‖ is found, then the iteration process given by equation (31) can be started from
K̃n0 =

∫ t
0 k̃n0(t

′) dt ′. This could provide a wider convergencet-domain. In the next
subsection we emphasize the importance of enlarging this region because of its effect on
the error bounds of approximate solutions.

3.3. Error bounds

We want now to bound‖X−X[n]‖ whereX[n] is thenth order Fer approximation and let us
write X = X[n]Xn. Then, if we introduceDn = Xn− I, we haveEn ≡ X−X[n] = X[n]Dn.

To bound‖En‖ we are going to bound bothDn andX[n] . To this end we start by writing
Dn in the form

Dn(t) =
∫ t

0
dt ′An(t ′)Xn(t ′). (36)

From equation (28) we get‖Xn‖ 6 exp[
∫ t

0 ‖An‖ dt ′] 6 eKn , and so

‖Dn‖ 6
∫ t

0
‖An‖‖Xn‖ dt ′ 6 eKn

∫ t

0
‖An‖ dt ′ 6 Kn eKn. (37)

As far asX[n] is concerned, we observe that

‖X[n]‖ = ‖XX−1
n ‖ 6 ‖X‖‖X−1

n ‖ 6 eK0 eKn. (38)

Finally, we have

‖En‖ 6 Kn eK0+2Kn (39)

whereKn is given recursively by equation (34) starting with the initial valueK0. As we
have already noticed

K0 < 0.860 4065⇒ Kn →
n→∞0⇒ ‖En‖ →

n→∞0 (40)

and this allows us to find error bounds for the Fer approximate solutions.
We have already pointed out the importance of enlarging the region where, for a given

value of t , K0(t) may lie and still after iteration originateKn→ 0 asn→∞. If ξ bounds
this region (hereξ = 0.860 4065 for a generalA) we can always writeK0 = αξ , with
0< α < 1, and thus

‖En‖ 6 α2nξ eξ(α+2α2n ). (41)

So, in general, the larger the boundξ , the smaller the coefficientα and the better the error
bounds.

Again, as already mentioned above, for skew-HermitianA equation (39) can be refined
to ‖En‖ 6 2(K0/2)2

n

.

4. Conclusions and outlook

As we have sketched in the introduction, the ME and FE have deserved very different
attention in the literature. From the point of view of physical applications, the ME has been
extensively used in a variety of issues, while the FE has been either ignored or misquoted
until recently. As regards convergence, an upper bound appears already in Fer’s original
work. This is in contrast to the situation for the ME.
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The rate of convergence of the FE is faster than that of the ME in the sense that, for a
prescribed precision, one needs more�k ’s thanFk ’s even if from the computational point
of view the latter could require more work than the former. Thus, the characteristics of the
problem at hand might ultimately dictate the method to be used.

The analysis reported in this paper has been based directly on the original form of
the differential matrix equation (1). Convenient transformations based on a more detailed
knowledge of theA matrix can originate better performances of both the ME and FE.
An analysis in this sense along the lines of [37] is in progress. We emphasize also that
our results may be of some utility in the construction and implementation of numerical
integrators, a question that we will analyse in the forthcoming future.

The two algorithms discussed so far are by no means mutually exclusive. They can be
combined in a mixed way. Thus one can for instance leave the ME after a few steps and go
on with the FE, a procedure already suggested in [9] and implemented in its lowest orders
in [35].

In conclusion, we think that the various bounds we have obtained here, equations (22)
and (35), contribute to a deeper understanding of Magnus and Fer expansions. We encourage
an efficient incorporation of the present results to avoid a rather blind application of these
schemes.
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